1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*!

Frequency table models for the arithmetic coder.
The module also implements Reader/Writer using simple byte coding.

# Links

# Example

# Credit

*/

use std::io::{self, Read, Write};
use super::Border;

pub type Frequency = u16;

/// A simple table of frequencies.
pub struct Model {
    /// sum of frequencies
    total: Border,
    /// main table: value -> Frequency
    table: Vec<Frequency>,
    /// maximum allowed sum of frequency,
    /// should be smaller than RangeEncoder::threshold
    cut_threshold: Border,
    /// number of bits to shift on cut
    cut_shift: usize,
}

impl Model {
    /// Create a new table with frequencies initialized by a function
    pub fn new_custom<F>(num_values: usize, threshold: Border,
                         mut fn_init: F) -> Model
        where F: FnMut(usize) -> Frequency
    {
        let freq: Vec<Frequency> = (0..num_values).map(|i| fn_init(i)).collect();
        let total = freq.iter().fold(0 as Border, |u,&f| u+(f as Border));
        let mut ft = Model {
            total: total,
            table: freq,
            cut_threshold: threshold,
            cut_shift: 1,
        };
        // downscale if needed
        while ft.total >= threshold {
            ft.downscale();
        }
        ft
    }

    /// Create a new tanle with all frequencies being equal
    pub fn new_flat(num_values: usize, threshold: Border) -> Model {
        Model::new_custom(num_values, threshold, |_| 1)
    }

    /// Reset the table to the flat state
    pub fn reset_flat(&mut self) {
        for freq in self.table.iter_mut() {
            *freq = 1;
        }
        self.total = self.table.len() as Border;
    }

    /// Adapt the table in favor of given 'value'
    /// using 'add_log' and 'add_const' to produce the additive factor
    /// the higher 'add_log' is, the more concervative is the adaptation
    pub fn update(&mut self, value: usize, add_log: usize, add_const: Border) {
        let add = (self.total>>add_log) + add_const;
        assert!(add < 2*self.cut_threshold);
        debug!("\tUpdating by adding {} to value {}", add, value);
        self.table[value] += add as Frequency;
        self.total += add;
        if self.total >= self.cut_threshold {
            self.downscale();
            assert!(self.total < self.cut_threshold);
        }
    }

    /// Reduce frequencies by 'cut_iter' bits
    pub fn downscale(&mut self) {
        debug!("\tDownscaling frequencies");
        let roundup = (1<<self.cut_shift) - 1;
        self.total = 0;
        for freq in self.table.iter_mut() {
            // preserve non-zero frequencies to remain positive
            *freq = (*freq+roundup) >> self.cut_shift;
            self.total += *freq as Border;
        }
    }

    /// Return read-only frequencies slice
    pub fn get_frequencies<'a>(&'a self) -> &'a [Frequency] {
        &self.table[..]
    }
}

impl super::Model<usize> for Model {
    fn get_range(&self, value: usize) -> (Border,Border) {
        let lo = self.table[..value].iter().fold(0, |u,&f| u+(f as Border));
        (lo, lo + (self.table[value] as Border))
    }

    fn find_value(&self, offset: Border) -> (usize,Border,Border) {
        assert!(offset < self.total,
            "Invalid frequency offset {} requested under total {}",
            offset, self.total);
        let mut value = 0;
        let mut lo = 0 as Border;
        let mut hi;
        while {hi=lo+(self.table[value] as Border); hi} <= offset {
            lo = hi;
            value += 1;
        }
        (value, lo, hi)
    }

    fn get_denominator(&self) -> Border {
        self.total
    }
}


/// A proxy model for the sum of two frequency tables
/// using equation: (wa * A + wb * B) >> ws
pub struct SumProxy<'a> {
    first: &'a Model,
    second: &'a Model,
    w_first: Border,
    w_second: Border,
    w_shift: Border,
}

impl<'a> SumProxy<'a> {
    /// Create a new instance of the table sum proxy
    pub fn new(wa: Border, fa: &'a Model, wb: Border, fb: &'a Model, shift: Border) -> SumProxy<'a> {
        assert_eq!(fa.get_frequencies().len(), fb.get_frequencies().len());
        SumProxy {
            first: fa,
            second: fb,
            w_first: wa,
            w_second: wb,
            w_shift: shift,
        }
    }
}

impl<'a> super::Model<usize> for SumProxy<'a> {
    fn get_range(&self, value: usize) -> (Border,Border) {
        let (lo0, hi0) = self.first.get_range(value);
        let (lo1, hi1) = self.second.get_range(value);
        let (wa, wb, ws) = (self.w_first, self.w_second, self.w_shift as usize);
        ((wa*lo0 + wb*lo1)>>ws, (wa*hi0 + wb*hi1)>>ws)
    }

    fn find_value(&self, offset: Border) -> (usize,Border,Border) {
        assert!(offset < self.get_denominator(),
            "Invalid frequency offset {} requested under total {}",
            offset, self.get_denominator());
        let mut value = 0;
        let mut lo = 0 as Border;
        let mut hi;
        while {  hi = lo +
                (self.w_first * (self.first.get_frequencies()[value] as Border) +
                self.w_second * (self.second.get_frequencies()[value] as Border)) >>
                (self.w_shift as usize);
                hi <= offset } {
            lo = hi;
            value += 1;
        }
        (value, lo, hi)
    }

    fn get_denominator(&self) -> Border {
        (self.w_first * self.first.get_denominator() +
            self.w_second * self.second.get_denominator()) >>
            (self.w_shift as usize)
    }
}


/// A basic byte-encoding arithmetic
/// uses a special terminator code to end the stream
pub struct ByteEncoder<W> {
    /// A lower level encoder
    pub encoder: super::Encoder<W>,
    /// A basic frequency table
    pub freq: Model,
}

impl<W: Write> ByteEncoder<W> {
    /// Create a new encoder on top of a given Writer
    pub fn new(w: W) -> ByteEncoder<W> {
        let freq_max = super::RANGE_DEFAULT_THRESHOLD >> 2;
        ByteEncoder {
            encoder: super::Encoder::new(w),
            freq: Model::new_flat(super::SYMBOL_TOTAL+1, freq_max),
        }
    }

    /// Finish encoding & write the terminator symbol
    pub fn finish(mut self) -> (W, io::Result<()>) {
        let ret = self.encoder.encode(super::SYMBOL_TOTAL, &self.freq);
        let (w,r2) = self.encoder.finish();
        (w, ret.and(r2))
    }
}

impl<W: Write> Write for ByteEncoder<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        for byte in buf.iter() {
            let value = *byte as usize;
            try!(self.encoder.encode(value, &self.freq));
            self.freq.update(value, 10, 1);
        }

        Ok(buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        self.encoder.flush()
    }
}


/// A basic byte-decoding arithmetic
/// expects a special terminator code for the end of the stream
pub struct ByteDecoder<R> {
    /// A lower level decoder
    pub decoder: super::Decoder<R>,
    /// A basic frequency table
    pub freq: Model,
    /// Remember if we found the terminator code
    is_eof: bool,
}

impl<R: Read> ByteDecoder<R> {
    /// Create a decoder on top of a given Reader
    pub fn new(r: R) -> ByteDecoder<R> {
        let freq_max = super::RANGE_DEFAULT_THRESHOLD >> 2;
        ByteDecoder {
            decoder: super::Decoder::new(r),
            freq: Model::new_flat(super::SYMBOL_TOTAL+1, freq_max),
            is_eof: false,
        }
    }

    /// Finish decoding
    pub fn finish(self) -> (R, io::Result<()>) {
        self.decoder.finish()
    }
}

impl<R: Read> Read for ByteDecoder<R> {
    fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
        if self.is_eof {
            return Ok(0)
        }
        let mut amount = 0;
        for out_byte in dst.iter_mut() {
            let value = try!(self.decoder.decode(&self.freq));
            if value == super::SYMBOL_TOTAL {
                self.is_eof = true;
                break
            }
            self.freq.update(value, 10, 1);
            *out_byte = value as u8;
            amount += 1;
        }
        Ok(amount)
    }
}