1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/*!

LZ4 Decompression and Compression. Requires `lz4` feature, enabled by default

This module contains an implementation in Rust of decompression and compression
of LZ4-encoded streams. These are exposed as a standard `Reader` and `Writer`
interfaces wrapping an underlying stream.

# Example

```rust,ignore
use compress::lz4;
use std::fs::File;
use std::path::Path;
use std::io::Read;

let stream = File::open(&Path::new("path/to/file.lz4")).unwrap();
let mut decompressed = Vec::new();
lz4::Decoder::new(stream).read_to_end(&mut decompressed);
```

# Credit

This implementation is largely based on Branimir Karadžić's implementation which
can be found at https://github.com/bkaradzic/go-lz4.

*/

use std::cmp;
use std::ptr::copy_nonoverlapping;
use std::io::{self, Read, Write};
use std::iter::repeat;
use std::vec::Vec;
use std::num::Wrapping;
use std::ops::Shr;

use super::byteorder::{LittleEndian, WriteBytesExt, ReadBytesExt};
use super::{ReadExact, byteorder_err_to_io};

const MAGIC: u32 = 0x184d2204;

const ML_BITS: u32 = 4;
const ML_MASK: u32 = (1 << ML_BITS as usize) - 1;
const RUN_BITS: u32 = 8 - ML_BITS;
const RUN_MASK: u32 = (1 << RUN_BITS as usize) - 1;

const MIN_MATCH: u32 = 4;
const HASH_LOG: u32 = 17;
const HASH_TABLE_SIZE: u32 = 1 << (HASH_LOG as usize);
const HASH_SHIFT: u32 = (MIN_MATCH * 8) - HASH_LOG;
const INCOMPRESSIBLE: u32 = 128;
const UNINITHASH: u32 = 0x88888888;
const MAX_INPUT_SIZE: u32 = 0x7e000000;

struct BlockDecoder<'a> {
    input: &'a [u8],
    output: &'a mut Vec<u8>,
    cur: usize,

    start: usize,
    end: usize,
}

impl<'a> BlockDecoder<'a> {
    /// Decodes this block of data from 'input' to 'output', returning the
    /// number of valid bytes in the output.
    fn decode(&mut self) -> usize {
        while self.cur < self.input.len() {
            let code = self.bump();
            debug!("block with code: {:x}", code);
            // Extract a chunk of data from the input to the output.
            {
                let len = self.length(code >> 4);
                debug!("consume len {}", len);
                if len > 0 {
                    let end = self.end;
                    self.grow_output(end + len);
                    unsafe { copy_nonoverlapping(
                        &self.input[self.cur],
                        &mut self.output[end],
                        len
                    )};
                    self.end += len;
                    self.cur += len;
                }
            }
            if self.cur == self.input.len() { break }

            // Read off the next i16 offset
            {
                let back = (self.bump() as usize) | ((self.bump() as usize) << 8);
                debug!("found back {}", back);
                self.start = self.end - back;
            }

            // Slosh around some bytes now
            {
                let mut len = self.length(code & 0xf);
                let literal = self.end - self.start;
                if literal < 4 {
                    static DECR: [usize; 4] = [0, 3, 2, 3];
                    self.cp(4, DECR[literal]);
                } else {
                    len += 4;
                }
                self.cp(len, 0);
            }
        }
        self.end
    }

    fn length(&mut self, code: u8) -> usize {
        let mut ret = code as usize;
        if code == 0xf {
            loop {
                let tmp = self.bump();
                ret += tmp as usize;
                if tmp != 0xff { break }
            }
        }
        ret
    }

    fn bump(&mut self) -> u8 {
        let ret = self.input[self.cur];
        self.cur += 1;
        ret
    }

    #[inline]
    fn cp(&mut self, len: usize, decr: usize) {
        let end = self.end;
        self.grow_output(end + len);
        for i in 0..len {
            self.output[end + i] = (*self.output)[self.start + i];
        }

        self.end += len;
        self.start += len - decr;
    }

    // Extends the output vector to a target number of bytes (in total), but
    // does not actually initialize the new data. The length of the vector is
    // updated, but the bytes will all have undefined values. It is assumed that
    // the next operation is to pave over these bytes (so the initialization is
    // unnecessary).
    #[inline]
    fn grow_output(&mut self, target: usize) {
        if self.output.capacity() < target {
            debug!("growing {} to {}", self.output.capacity(), target);
            //let additional = target - self.output.capacity();
            //self.output.reserve(additional);
            while self.output.len() < target {
                self.output.push(0);
            }
        }else {
            unsafe {
               self.output.set_len(target);
            }
        }
    }
}

struct BlockEncoder<'a> {
    input: &'a [u8],
    output: &'a mut Vec<u8>,
    hash_table: Vec<u32>,
    pos: u32,
    anchor: u32,
    dest_pos: u32
}

/// Returns maximum possible size of compressed output
/// given source size
pub fn compression_bound(size: u32) -> Option<u32> {
    if size > MAX_INPUT_SIZE {
        None
    } else {
        Some(size + (size / 255) + 16 + 4)
    }
}

impl<'a> BlockEncoder<'a> {
    #[inline(always)]
    fn seq_at(&self, pos: u32) -> u32 {
        (self.input[pos as usize + 3] as u32) << 24
            | (self.input[pos as usize + 2] as u32) << 16
            | (self.input[pos as usize + 1] as u32) << 8
            | (self.input[pos as usize] as u32)
    }

    fn write_literals(&mut self, len: u32, ml_len: u32, pos: u32) {
        let mut ln = len;

        let code = if ln > RUN_MASK - 1 { RUN_MASK as u8 } else { ln as u8 };

        if ml_len > ML_MASK - 1 {
            self.output[self.dest_pos as usize] = (code << ML_BITS as usize) + ML_MASK as u8;
        } else {
            self.output[self.dest_pos as usize] = (code << ML_BITS as usize) + ml_len as u8;
        }

        self.dest_pos += 1;

        if code == RUN_MASK as u8 {
            ln -= RUN_MASK;
            while ln > 254 {
                self.output[self.dest_pos as usize] = 255;
                self.dest_pos += 1;
                ln -= 255;
            }

            self.output[self.dest_pos as usize] = ln as u8;
            self.dest_pos += 1;
        }

        // FIXME: find out why slicing syntax fails tests
        //self.output[self.dest_pos as usize .. (self.dest_pos + len) as usize] = self.input[pos as uint.. (pos + len) as uint];
        for i in 0..(len as usize) {
            self.output[self.dest_pos as usize + i] = self.input[pos as usize + i];
        }

        self.dest_pos += len;
    }

    fn encode(&mut self) -> u32 {
        let input_len = self.input.len() as u32;

        match compression_bound(input_len) {
            None => 0,
            Some(out_size) => {
                let out_size_usize = out_size as usize;
                if self.output.capacity() < out_size_usize {
                    let additional = out_size_usize - self.output.capacity();
                    self.output.reserve(additional);
                }
                unsafe {self.output.set_len(out_size_usize); }

                let mut step = 1u32;
                let mut limit = INCOMPRESSIBLE;

                loop {
                    if self.pos + 12 > input_len {
                        let tmp = self.anchor;
                        self.write_literals(self.input.len() as u32 - tmp, 0, tmp);
                        unsafe { self.output.set_len(self.dest_pos as usize) };
                        return self.dest_pos;
                    }

                    let seq = self.seq_at(self.pos);
                    let hash = (Wrapping(seq) * Wrapping(2654435761)).shr(HASH_SHIFT as usize).0;
                    let mut r = (Wrapping(self.hash_table[hash as usize]) + Wrapping(UNINITHASH)).0;
                    self.hash_table[hash as usize] = (Wrapping(self.pos) - Wrapping(UNINITHASH)).0;

                    if (Wrapping(self.pos) - Wrapping(r)).shr(16).0 != 0 || seq != self.seq_at(r) {
                        if self.pos - self.anchor > limit {
                            limit = limit << 1;
                            step += 1 + (step >> 2);
                        }
                        self.pos += step;
                        continue;
                    }

                    if step > 1 {
                        self.hash_table[hash as usize] = r - UNINITHASH;
                        self.pos -= step - 1;
                        step = 1;
                        continue;
                    }

                    limit = INCOMPRESSIBLE;

                    let ln = self.pos - self.anchor;
                    let back = self.pos - r;
                    let anchor = self.anchor;

                    self.pos += MIN_MATCH;
                    r += MIN_MATCH;
                    self.anchor = self.pos;

                    while (self.pos < input_len - 5) && self.input[self.pos as usize] == self.input[r as usize] {
                        self.pos += 1;
                        r += 1
                    }

                    let mut ml_len = self.pos - self.anchor;

                    self.write_literals(ln, ml_len, anchor);
                    self.output[self.dest_pos as usize] = back as u8;
                    self.output[self.dest_pos as usize + 1] = (back >> 8) as u8;
                    self.dest_pos += 2;

                    if ml_len > ML_MASK - 1 {
                        ml_len -= ML_MASK;
                        while ml_len > 254 {
                            ml_len -= 255;

                            self.output[self.dest_pos as usize] = 255;
                            self.dest_pos += 1;
                        }

                        self.output[self.dest_pos as usize] = ml_len as u8;
                        self.dest_pos += 1;
                    }

                    self.anchor = self.pos;
                }
            }
        }
    }
}

/// This structure is used to decode a stream of LZ4 blocks. This wraps an
/// internal reader which is read from when this decoder's read method is
/// called.
pub struct Decoder<R> {
    /// The internally wrapped reader. This is exposed so it may be moved out
    /// of. Note that if data is read from the reader while decoding is in
    /// progress the output stream will get corrupted.
    pub r: R,

    temp: Vec<u8>,
    output: Vec<u8>,

    start: usize,
    end: usize,
    eof: bool,

    header: bool,
    blk_checksum: bool,
    stream_checksum: bool,
    max_block_size: usize,
}

impl<R: Read + Sized> Decoder<R> {
    /// Creates a new decoder which will read data from the given stream. The
    /// inner stream can be re-acquired by moving out of the `r` field of this
    /// structure.
    pub fn new(r: R) -> Decoder<R> {
        Decoder {
            r: r,
            temp: Vec::new(),
            output: Vec::new(),
            header: false,
            blk_checksum: false,
            stream_checksum: false,
            start: 0,
            end: 0,
            eof: false,
            max_block_size: 0,
        }
    }

    /// Resets this decoder back to its initial state. Note that the underlying
    /// stream is not seeked on or has any alterations performed on it.
    pub fn reset(&mut self) {
        self.header = false;
        self.eof = false;
        self.start = 0;
        self.end = 0;
    }

    fn read_header(&mut self) -> io::Result<()> {
        // Make sure the magic number is what's expected.
        if try!(self.r.read_u32::<LittleEndian>()) != MAGIC {
            return Err(io::Error::new(io::ErrorKind::InvalidInput, ""))
        }

        let mut bits = [0; 3];
        try!(self.r.read(&mut bits[..2]));
        let flg = bits[0];
        let bd = bits[1];

        // bits 7/6, the version number. Right now this must be 1
        if (flg >> 6) != 0b01 {
            return Err(io::Error::new(io::ErrorKind::InvalidInput, ""))
        }
        // bit 5 is the "block independence", don't care about this yet
        // bit 4 is whether blocks have checksums or not
        self.blk_checksum = (flg & 0x10) != 0;
        // bit 3 is whether there is a following stream size
        let stream_size = (flg & 0x08) != 0;
        // bit 2 is whether there is a stream checksum
        self.stream_checksum = (flg & 0x04) != 0;
        // bit 1 is reserved
        // bit 0 is whether there is a preset dictionary
        let preset_dictionary = (flg & 0x01) != 0;

        static MAX_SIZES: [usize; 8] =
            [0, 0, 0, 0, // all N/A
             64 << 10,   // 64KB
             256 << 10,  // 256 KB
             1 << 20,    // 1MB
             4 << 20];   // 4MB

        // bit 7 is reserved
        // bits 6-4 are the maximum block size
        let max_block_size = MAX_SIZES[(bd >> 4) as usize & 0x7];
        // bits 3-0 are reserved

        // read off other portions of the stream
        let size = if stream_size {
            Some(try!(self.r.read_u64::<LittleEndian>()))
        } else {
            None
        };
        assert!(!preset_dictionary, "preset dictionaries not supported yet");

        debug!("blk: {}", self.blk_checksum);
        debug!("stream: {}", self.stream_checksum);
        debug!("max size: {}", max_block_size);
        debug!("stream size: {:?}", size);

        self.max_block_size = max_block_size;

        // XXX: implement checksums
        let cksum = try!(self.r.read_u8());
        debug!("ignoring header checksum: {}", cksum);
        return Ok(());
    }

    fn decode_block(&mut self) -> io::Result<bool> {
        match try!(self.r.read_u32::<LittleEndian>()) {
            // final block, we're done here
            0 => return Ok(false),

            // raw block to read
            n if n & 0x80000000 != 0 => {
                let amt = (n & 0x7fffffff) as usize;
                self.output.truncate(0);
                self.output.reserve(amt);
                try!(self.r.push_exactly(amt as u64, &mut self.output));
                self.start = 0;
                self.end = amt;
            }

            // actual block to decompress
            n => {
                let n = n as usize;
                self.temp.truncate(0);
                self.temp.reserve(n);
                try!(self.r.push_exactly(n as u64, &mut self.temp));

                let target = cmp::min(self.max_block_size, 4 * n / 3);
                self.output.truncate(0);
                self.output.reserve(target);
                let mut decoder = BlockDecoder {
                    input: &self.temp[..n],
                    output: &mut self.output,
                    cur: 0,
                    start: 0,
                    end: 0,
                };
                self.start = 0;
                self.end = decoder.decode();
            }
        }

        if self.blk_checksum {
            let cksum = try!(self.r.read_u32::<LittleEndian>());
            debug!("ignoring block checksum {}", cksum);
        }
        return Ok(true);
    }

    /// Tests whether the end of this LZ4 stream has been reached
    pub fn eof(&mut self) -> bool { self.eof }
}

impl<R: Read> Read for Decoder<R> {
    fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
        if self.eof { return Ok(0) }
        if !self.header {
            try!(self.read_header());
            self.header = true;
        }
        let mut amt = dst.len();
        let len = amt;

        while amt > 0 {
            if self.start == self.end {
                let keep_going = try!(self.decode_block());
                if !keep_going {
                    self.eof = true;
                    break;
                }
            }
            let n = cmp::min(amt, self.end - self.start);
            unsafe { copy_nonoverlapping(
                &self.output[self.start],
                &mut dst[len - amt],
                n
            )};
            self.start += n;
            amt -= n;
        }

        Ok(len - amt)
    }
}

/// This structure is used to compress a stream of bytes using the LZ4
/// compression algorithm. This is a wrapper around an internal writer which
/// bytes will be written to.
pub struct Encoder<W> {
    w: W,
    buf: Vec<u8>,
    tmp: Vec<u8>,
    wrote_header: bool,
    limit: usize,
}

impl<W: Write> Encoder<W> {
    /// Creates a new encoder which will have its output written to the given
    /// output stream. The output stream can be re-acquired by calling
    /// `finish()`
    ///
    /// NOTE: compression isn't actually implemented just yet, this is just a
    /// skeleton of a future implementation.
    pub fn new(w: W) -> Encoder<W> {
        Encoder {
            w: w,
            wrote_header: false,
            buf: Vec::with_capacity(1024),
            tmp: Vec::new(),
            limit: 256 * 1024,
        }
    }

    fn encode_block(&mut self) -> io::Result<()> {
        self.tmp.truncate(0);
        if self.compress() {
            try!(self.w.write_u32::<LittleEndian>(self.tmp.len() as u32));
            try!(self.w.write(&self.tmp));
        } else {
            try!(self.w.write_u32::<LittleEndian>((self.buf.len() as u32) | 0x80000000));
            try!(self.w.write(&self.buf));
        }
        self.buf.truncate(0);
        Ok(())
    }

    fn compress(&mut self) -> bool {
        false
    }

    /// This function is used to flag that this session of compression is done
    /// with. The stream is finished up (final bytes are written), and then the
    /// wrapped writer is returned.
    pub fn finish(mut self) -> (W, io::Result<()>) {
        let mut result = self.flush();

        for _ in 0..2 {
            let tmp = self.w.write_u32::<LittleEndian>(0)
                            .map_err(byteorder_err_to_io);

            result = result.and_then(|_| tmp);
        }

        (self.w, result)
    }
}

impl<W: Write> Write for Encoder<W> {
    fn write(&mut self, mut buf: &[u8]) -> io::Result<usize> {
        if !self.wrote_header {
            try!(self.w.write_u32::<LittleEndian>(MAGIC));
            // version 01, turn on block independence, but turn off
            // everything else (we have no checksums right now).
            try!(self.w.write_u8(0b01_100000));
            // Maximum block size is 256KB
            try!(self.w.write_u8(0b0_101_0000));
            // XXX: this checksum is just plain wrong.
            try!(self.w.write_u8(0));
            self.wrote_header = true;
        }

        while buf.len() > 0 {
            let amt = cmp::min(self.limit - self.buf.len(), buf.len());
            self.buf.extend(buf[..amt].iter().map(|b| *b));

            if self.buf.len() == self.limit {
                try!(self.encode_block());
            }
            buf = &buf[amt..];
        }

        Ok(buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        if self.buf.len() > 0 {
            try!(self.encode_block());
        }
        self.w.flush()
    }
}


/// Decodes pure LZ4 block into output. Returns count of bytes
/// processed.
pub fn decode_block(input: &[u8], output: &mut Vec<u8>) -> usize {
    let mut b = BlockDecoder {
        input: input,
        output: output,
        cur: 0,
        start: 0,
        end: 0
    };
    b.decode()
}


/// Encodes input into pure LZ4 block. Return count of bytes
/// processed.
pub fn encode_block(input: &[u8], output: &mut Vec<u8>) -> usize {
    let mut encoder = BlockEncoder {
        input: input,
        output: output,
        hash_table: repeat(0).take(HASH_TABLE_SIZE as usize).collect(),
        pos: 0,
        anchor: 0,
        dest_pos: 0
    };

    encoder.encode() as usize
}

#[cfg(test)]
mod test {
    use std::io::{BufReader, BufWriter, Read, Write};
    use super::super::rand;
    use super::{Decoder, Encoder};
    #[cfg(feature="unstable")]
    use test;

    use super::super::byteorder::ReadBytesExt;

    fn test_decode(input: &[u8], output: &[u8]) {
        let mut d = Decoder::new(BufReader::new(input));
        let mut buf = Vec::new();

        d.read_to_end(&mut buf).unwrap();
        assert!(&buf[..] == output);
    }

    #[test]
    fn decode() {
        let reference = include_bytes!("data/test.txt");
        test_decode(include_bytes!("data/test.lz4.1"), reference);
        test_decode(include_bytes!("data/test.lz4.2"), reference);
        test_decode(include_bytes!("data/test.lz4.3"), reference);
        test_decode(include_bytes!("data/test.lz4.4"), reference);
        test_decode(include_bytes!("data/test.lz4.5"), reference);
        test_decode(include_bytes!("data/test.lz4.6"), reference);
        test_decode(include_bytes!("data/test.lz4.7"), reference);
        test_decode(include_bytes!("data/test.lz4.8"), reference);
        test_decode(include_bytes!("data/test.lz4.9"), reference);
    }

    #[test]
    fn raw_encode_block() {
        let data = include_bytes!("data/test.txt");
        let mut encoded = Vec::new();

        super::encode_block(data, &mut encoded);
        let mut decoded = Vec::new();

        super::decode_block(&encoded[..], &mut decoded);

        assert_eq!(&data[..], &decoded[..]);
    }

    #[test]
    fn one_byte_at_a_time() {
        let input = include_bytes!("data/test.lz4.1");
        let mut d = Decoder::new(BufReader::new(&input[..]));
        assert!(!d.eof());
        let mut out = Vec::new();
        loop {
            match d.read_u8() {
                Ok(b) => out.push(b),
                Err(..) => break
            }
        }
        assert!(d.eof());
        assert!(&out[..] == &include_bytes!("data/test.txt")[..]);
    }

    #[test]
    fn random_byte_lengths() {
        let input = include_bytes!("data/test.lz4.1");
        let mut d = Decoder::new(BufReader::new(&input[..]));
        let mut out = Vec::new();
        let mut buf = [0u8; 40];
        loop {
            match d.read(&mut buf[..(1 + rand::random::<usize>() % 40)]) {
                Ok(0) => break,
                Ok(n) => {
                    out.extend(buf[..n].iter().map(|b| *b));
                }
                Err(..) => break
            }
        }
        assert!(&out[..] == &include_bytes!("data/test.txt")[..]);
    }

    fn roundtrip(bytes: &[u8]) {
        let mut e = Encoder::new(BufWriter::new(Vec::new()));
        e.write(bytes).unwrap();
        let (e, err) = e.finish();
        err.unwrap();
        let encoded = e.into_inner().unwrap();

        let mut d = Decoder::new(BufReader::new(&encoded[..]));
        let mut decoded = Vec::new();
        d.read_to_end(&mut decoded).unwrap();
        assert_eq!(&decoded[..], bytes);
    }

    #[test]
    fn some_roundtrips() {
        roundtrip(b"test");
        roundtrip(b"");
        roundtrip(include_bytes!("data/test.txt"));
    }

    #[cfg(feature="unstable")]
    #[bench]
    fn decompress_speed(bh: &mut test::Bencher) {
        let input = include_bytes!("data/test.lz4.9");
        let mut d = Decoder::new(BufReader::new(&input[..]));
        let mut output = [0u8; 65536];
        let mut output_size = 0;
        bh.iter(|| {
            d.r = BufReader::new(&input[..]);
            d.reset();
            output_size = d.read(&mut output).unwrap();
        });
        bh.bytes = output_size as u64;
    }
}