1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*! 

Run time length encoding and decoding based on byte streams, see 
https://en.wikipedia.org/wiki/Run-length_encoding.

A run is defined as a sequence of identical bytes of length two or greater. 
A run of byte a and length n is encoded by a two repitions of a, followed 
by a length specification which describes how much often these bytes are 
repeated. Such a specification is a string of bytes with dynamic length.
The most significat bit of each byte in this string indicates if the byte is
the last byte in the string. The rest of the bits are concatenated using 
the Little Endian convention.

# Example

```rust
use compress::rle;
use std::io::{Write, Read};

let input = b"Helloooo world!!";

let mut encoder = rle::Encoder::new(Vec::new());
encoder.write_all(&input[..]).unwrap();
let (buf, _): (Vec<u8>, _) = encoder.finish();

let mut decoder = rle::Decoder::new(&buf[..]);
let mut decoder_buf = Vec::new();
decoder.read_to_end(&mut decoder_buf).unwrap();

assert_eq!(&input[..], &decoder_buf[..]);
```

!*/

use std::io::{self, Write, Read, Bytes};

/// This structure is used to compress a stream of bytes using a RLE
/// compression algorithm. This is a wrapper around an internal writer which
/// bytes will be written to.
pub struct Encoder<W> {
    w: W,
    reps: u64,
    byte: u8,
    in_run: bool
}

impl<W: Write> Encoder<W> {
    /// Creates a new encoder which will have its output written to the given
    /// output stream.
    pub fn new(w: W) -> Encoder<W> {
        Encoder {
            w: w,
            reps: 0,
            byte: 0,
            in_run: false
        }
    }

    /// This function is used to flag that this session of compression is done
    /// with. The stream is finished up (final bytes are written), and then the
    /// wrapped writer is returned.
    pub fn finish(mut self) -> (W, io::Result<()>) {
        let result = self.flush();

        (self.w, result)
    }

    fn process_byte(&mut self, byte: u8) -> io::Result<()> {
        if self.byte == byte {
            self.reps += 1;
        } else if self.byte != byte {
            try!(self.flush());
            self.reps = 1;
            self.byte = byte;
        }

        Ok(())
    }
}

impl<W: Write> Write for Encoder<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        if ! self.in_run && buf.len() > 0 {
            self.byte = buf[0];
            self.reps = 1;
            self.in_run = true;
        }

        for byte in &buf[1..] {
            try!(self.process_byte(*byte));
        }

        Ok(buf.len())
    }

    fn flush(&mut self) -> io::Result<()> {
        if self.reps == 1 {
            try!(self.w.write(&[self.byte]));
        } else if self.reps > 1 {
            let mut buf = [0; 11];
            let mut reps_encode = self.reps - 2;
            let mut index = 2;
            buf[0] = self.byte;
            buf[1] = self.byte;

            loop {
                buf[index] = (reps_encode & 0b0111_1111) as u8;
                reps_encode = reps_encode >> 7;

                if reps_encode == 0 {
                    buf[index] = buf[index] | 0b1000_0000;
                    break;
                }

                index += 1;
            }

            try!(self.w.write(&buf[..(index + 1)]));
        }

        Ok(())
    }
}

struct RunBuilder {
    byte: u8,
    slice: [u8; 9],
    byte_count: u8
}

impl RunBuilder {
    fn new(byte: u8) -> RunBuilder {
        RunBuilder {
            byte: byte,
            slice: [0; 9],
            byte_count: 0
        }
    }

    fn to_run(&mut self) -> Run {
        let reps = 2 + self.slice.iter().enumerate().fold(0u64, |reps, (i, &byte)| {
            reps | (((byte & 0b0111_1111) as u64) << (i as u32 * 7))
        });

        Run {
            byte: self.byte,
            reps: reps
        }
    }

    fn add_byte(&mut self, byte: u8) -> io::Result<()> {
        if self.byte_count >= 9 {
            Err(io::Error::new(io::ErrorKind::Other, "Overly long run"))
        } else {
            self.slice[self.byte_count as usize] = byte;
            self.byte_count += 1;
            Ok(())
        }
    }
}
 
struct Run {
    byte: u8,
    reps: u64
}

enum DecoderState {
    Clean,
    Single(u8),
    Run(RunBuilder)
}

/// This structure is used to decode a run length encoded stream. This wraps
/// an internal reader which is read from when this decoder's read method is
/// called.
pub struct Decoder<R> {
    buf: Bytes<R>,
    state: DecoderState,
    run: Option<Run>
}

impl<R: Read> Decoder<R> {
    /// Creates a new decoder which will read data from the given stream. The
    /// inner stream can be re-acquired by moving out of the `r` field of this
    /// structure.
    pub fn new(r: R) -> Decoder<R> {
        Decoder {
            buf: r.bytes(),
            state: DecoderState::Clean,
            run: None
        }
    }

    fn read_byte(&mut self) -> io::Result<Option<u8>> {
        if let None = self.run {
            try!(self.read_run());
        }

        if let Some(Run { byte: b, reps: r }) = self.run {
            if r <= 1 {
                self.run = None;
            } else {
                self.run = Some(Run { byte: b, reps: r - 1 });
            }

            return Ok(Some(b))
        }

        Ok(None)
    }

    fn read_run(&mut self) -> io::Result<()> {
        let mut reset = false;

        while let Some(result) = self.buf.next() {
            let byte = try!(result);

            match self.state {
                DecoderState::Clean => {
                    self.state = DecoderState::Single(byte);
                },
                DecoderState::Single(current) => {
                    if byte == current {
                        self.state = DecoderState::Run(RunBuilder::new(byte));
                    } else {
                        self.run = Some(Run { byte: current, reps: 1 });
                        self.state = DecoderState::Single(byte);
                        break;
                    }
                },
                DecoderState::Run(ref mut run_builder) => {
                    try!(run_builder.add_byte(byte));

                    if Self::is_final_run_byte(byte) {
                        self.run = Some(run_builder.to_run());
                        reset = true;
                        break;
                    }
                }
            }
        }

        if reset {
            self.state = DecoderState::Clean;
        }

        // internal read object exhausted -- flush remaining state into run
        if let None = self.run {
            self.run = match self.state {
                DecoderState::Clean => None,
                DecoderState::Single(byte) => Some(Run { byte: byte, reps: 1 }),
                DecoderState::Run(ref mut run_builder) => Some(run_builder.to_run())
            };

            self.state = DecoderState::Clean;
        }

        Ok(())
    }

    fn is_final_run_byte(byte: u8) -> bool {
        0b1000_0000 & byte != 0
    }
}

impl<R: Read> Read for Decoder<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut bytes_read = 0;

        for slot in buf {
            match try!(self.read_byte()) {
                Some(b) => *slot = b,
                None => break
            }

            bytes_read += 1;
        }

        Ok(bytes_read)
    }
}

#[cfg(test)]
mod test {
    use super::{Decoder, Encoder};
    use super::super::rand::{RngCore,rngs::OsRng};
    use std::io::{Write, Read};
    use std::iter::{Iterator, repeat};
    #[cfg(feature="unstable")]
    use test;

    fn test_encode(input: &[u8], output: &[u8]) {
        let mut encoder = Encoder::new(Vec::new());
        encoder.write_all(input).unwrap();
        let (buf, _) = encoder.finish();

        assert_eq!(output, &buf[..]);
    }

    fn test_decode(input: &[u8], output: &[u8]) {
        let mut decoder = Decoder::new(input);
        let mut buf = Vec::new();
        decoder.read_to_end(&mut buf).unwrap();

        assert_eq!(output, &buf[..]);
    }

    fn test_roundtrip(input: &[u8]) {
        let mut encoder = Encoder::new(Vec::new());
        encoder.write_all(input).unwrap();
        let (buf, _) = encoder.finish();

        let mut decoder = Decoder::new(&buf[..]);
        let mut decoder_buf = Vec::new();
        decoder.read_to_end(&mut decoder_buf).unwrap();

        assert_eq!(input, &decoder_buf[..]);
    }

    #[test]
    fn simple_encoding() {
        test_encode(b"", b"");
        test_encode(b"a", b"a");
        test_encode(b"abca123", b"abca123");
        test_encode(&[20, 20, 20, 20, 20, 15], &[20, 20, 5 - 2 + 128, 15]);
        test_encode(&[0, 0], &[0, 0, 2 - 2 + 128]);
    }

    #[test]
    fn long_run_encoding() {
        let mut data = repeat(5).take(129).collect::<Vec<_>>();
        test_encode(&data[..], &[5, 5, 255]);

        data = [1, 3, 4, 4].iter().map(|&x| x).chain(repeat(100).take(2 + 52 + 128)).collect::<Vec<_>>();
        test_encode(&data[..], &[1, 3, 4, 4, 0 + 128, 100, 100, 52, 1 + 128]);
    }

    #[test]
    fn simple_decoding() {
        test_decode(b"", b"");
        test_decode(b"a", b"a");
        test_decode(b"abca123", b"abca123");
        test_decode(&[20, 20, 5 - 2 + 128, 15], &[20, 20, 20, 20, 20, 15]);
        test_decode(&[0, 0, 2 - 2 + 128], &[0, 0]);
    }

    #[test]
    fn long_run_decoding() {
        let data = [1, 3, 4, 4].iter().map(|&x| x).chain(repeat(100).take(2 + 52 + 128)).collect::<Vec<_>>();

        test_decode(&[1, 3, 4, 4, 0 + 128, 100, 100, 52, 1 + 128], &data[..]);
    }

    #[test]
    fn random_roundtrips() {
        for _ in 0..100 {
            let mut buf = [0; 13579];
            OsRng.fill_bytes(&mut buf[..]);
            test_roundtrip(&buf);
        }
    }

    // initial speed: 145 MB/s
    // after moving check to write: 145 MB/s

    #[cfg(feature="unstable")]
    #[bench]
    fn compress_speed(bh: &mut test::Bencher) {
        let input = include_bytes!("data/test.txt");
        bh.bytes = input.len() as u64;
        let output_size = Encoder::new(Vec::new()).write(&input[..]).unwrap();
        let mut buf = Vec::with_capacity(output_size);

        bh.iter(|| {
            let mut encoder = Encoder::new(&mut buf[..]);
            encoder.write(&input[..]).unwrap();
        });
    }

    // initial speed: 91 MB/s
    // after using a BufReader instead of VecDeque: 20 MB/s
    // after using a byte iterator on a BufReader: 20 MB/s
    // after using a byte iterator on the raw read object: 80 MB/s

    #[cfg(feature="unstable")]
    #[bench]
    fn decompress_speed(bh: &mut test::Bencher) {
        let input = include_bytes!("data/test.txt");
        let mut encoder = Encoder::new(Vec::new());
        encoder.write_all(&input[..]).unwrap();
        let (buf, _): (Vec<u8>, _) = encoder.finish();

        let mut output = [0u8; 65536];
        let mut output_size = 0;

        bh.iter(|| {
            let mut decoder = Decoder::new(& buf[..]);
            output_size = decoder.read(&mut output[..]).unwrap();
        });

        bh.bytes = output_size as u64;
    }
}