1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//! ZLIB Compression and Decompression. Requires `zlib` feature, enabled by default
//!
//! This module contains an implementation of the ZLIB compression scheme. This
//! compression format is based on an underlying DEFLATE-encoded stream.
//!
//! # Example
//!
//! ```rust,ignore
//! use compress::zlib;
//! use std::fs::File;
//! use std::path::Path;
//! use std::io::Read;
//!
//! let stream = File::open(&Path::new("path/to/file.zlib")).unwrap();
//! let mut decompressed = Vec::new();
//! zlib::Decoder::new(stream).read_to_end(&mut decompressed);
//! ```
//!
//! # Related links
//!
//! * http://tools.ietf.org/html/rfc1950 - RFC that this implementation is based
//!   on

use std::io::{self, Read};
use super::byteorder::{BigEndian, ReadBytesExt};

use Adler32;
use flate;

/// Structure used to decode a ZLIB-encoded stream. The wrapped stream can be
/// re-acquired through the unwrap() method.
pub struct Decoder<R> {
    hash: Adler32,
    inner: flate::Decoder<R>,
    read_header: bool,
}

impl<R: Read> Decoder<R> {
    /// Creates a new ZLIB-stream decoder which will wrap the specified reader.
    /// This decoder also implements the `Reader` trait, and the underlying
    /// reader can be re-acquired through the `unwrap` method.
    pub fn new(r: R) -> Decoder<R> {
        Decoder {
            hash: Adler32::new(),
            inner: flate::Decoder::new(r),
            read_header: false,
        }
    }

    /// Destroys this decoder, returning the underlying reader.
    pub fn unwrap(self) -> R {
        self.inner.r
    }

    fn validate_header(&mut self) -> io::Result<()> {
        let cmf = try!(self.inner.r.read_u8());
        let flg = try!(self.inner.r.read_u8());
        if cmf & 0xf != 0x8 {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "unsupported zlib stream format"
            ))
        }

        if cmf & 0xf0 != 0x70 {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "unsupported zlib window size"
            ))
        }

        if flg & 0x20 != 0 {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "unsupported initial dictionary in the output stream"
            ))
        }

        if ((cmf as u16) * 256 + (flg as u16)) % 31 != 0 {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                "invalid zlib header checksum"
            ))
        }
        Ok(())
    }

    /// Tests if this stream has reached the EOF point yet.
    pub fn eof(&self) -> bool { self.inner.eof() }

    #[allow(dead_code)]
    fn reset(&mut self) {
        self.inner.reset();
        self.hash.reset();
        self.read_header = false;
    }
}

impl<R: Read> Read for Decoder<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        if !self.read_header {
            try!(self.validate_header());
            self.read_header = true;
        } else if self.inner.eof() {
            return Ok(0);
        }
        match self.inner.read(buf) {
            Ok(0) => {
                let cksum = try!(self.inner.r.read_u32::<BigEndian>());
                if cksum != self.hash.result() {
                    Err(io::Error::new(
                        io::ErrorKind::InvalidInput,
                        "invalid checksum on zlib stream"
                    ))
                }
                else {
                    Ok(0)
                }
            }
            Ok(n) => {
                self.hash.feed(&buf[..n]);
                Ok(n)
            }
            Err(e) => Err(e)
        }
    }
}

#[cfg(test)]
#[allow(warnings)]
mod test {
    use std::io::{BufReader, BufWriter, Read, Write};
    use super::super::rand::{random};
    use super::super::byteorder::{LittleEndian, BigEndian, WriteBytesExt, ReadBytesExt};
    use std::str;
    use super::{Decoder};
    #[cfg(feature="unstable")]
    use test;

    fn test_decode(input: &[u8], output: &[u8]) {
        let mut d = Decoder::new(BufReader::new(input));
        let mut buf = Vec::new();

        if let Err(e) = d.read_to_end(&mut buf) {
            panic!("error reading: {}", e);
        }

        assert!(&buf[..] == output);
    }

    #[test]
    fn decode() {
        let reference = include_bytes!("data/test.txt");
        test_decode(include_bytes!("data/test.z.0"), reference);
        test_decode(include_bytes!("data/test.z.1"), reference);
        test_decode(include_bytes!("data/test.z.2"), reference);
        test_decode(include_bytes!("data/test.z.3"), reference);
        test_decode(include_bytes!("data/test.z.4"), reference);
        test_decode(include_bytes!("data/test.z.5"), reference);
        test_decode(include_bytes!("data/test.z.6"), reference);
        test_decode(include_bytes!("data/test.z.7"), reference);
        test_decode(include_bytes!("data/test.z.8"), reference);
        test_decode(include_bytes!("data/test.z.9"), reference);
    }

    #[test]
    fn large() {
        let reference = include_bytes!("data/test.large");
        test_decode(include_bytes!("data/test.large.z.5"), reference);
    }

    #[test]
    fn one_byte_at_a_time() {
        let input = include_bytes!("data/test.z.1");
        let mut d = Decoder::new(BufReader::new(&input[..]));
        assert!(!d.eof());
        let mut out = Vec::new();
        loop {
            match d.read_u8() {
                Ok(b) => out.push(b),
                Err(..) => break
            }
        }
        assert!(d.eof());
        assert!(&out[..] == &include_bytes!("data/test.txt")[..]);
    }

    #[test]
    fn random_byte_lengths() {
        let input = include_bytes!("data/test.z.1");
        let mut d = Decoder::new(BufReader::new(&input[..]));
        let mut out = Vec::new();
        let mut buf = [0u8; 40];
        loop {
            match d.read(&mut buf[..(1 + random::<usize>() % 40)]) {
                Ok(0) | Err(..) => break,
                Ok(n) => {
                    out.extend(buf[..n].iter().map(|b| *b));
                }
            }
        }
        assert!(&out[..] == &include_bytes!("data/test.txt")[..]);
    }

    //fn roundtrip(bytes: &[u8]) {
    //    let mut e = Encoder::new(MemWriter::new());
    //    e.write(bytes);
    //    let encoded = e.finish().unwrap();
    //
    //    let mut d = Decoder::new(BufReader::new(encoded));
    //    let decoded = d.read_to_end();
    //    assert_eq!(&decoded[..], bytes);
    //}
    //
    //#[test]
    //fn some_roundtrips() {
    //    roundtrip(bytes!("test"));
    //    roundtrip(bytes!(""));
    //    roundtrip(include_bytes!("data/test.txt"));
    //}

    #[cfg(feature="unstable")]
    #[bench]
    fn decompress_speed(bh: &mut test::Bencher) {
        let input = include_bytes!("data/test.z.9");
        let mut d = Decoder::new(BufReader::new(&input[..]));
        let mut output = [0u8; 65536];
        let mut output_size = 0;
        bh.iter(|| {
            d.inner.r = BufReader::new(input);
            d.reset();
            output_size = d.read(&mut output[..]).unwrap();
        });
        bh.bytes = output_size as u64;
    }
}